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Abstract. In an earlier Letter to the Editor (Donth E, Hempel E and Schick C 2000 J. Phys.:
Condens. Matter 12 L281) it was shown that the characteristic length of the dynamic glass transition
in confined geometries favours the von Laue approach to thermodynamics over the Gibbs approach.
In the present paper the two approaches are compared as regards their ability to describe temperature
fluctuations and statistically independent nanometre subsystems representative for linear response
of the whole sample. It is discussed why the dynamic glass transition can reflect properties of a
quantum mechanical (qm) experiment (measurement process). The fluctuation-dissipation theorem
(FDT) is interpreted as an equation describing a stationary succession of such experiments. The
thermodynamics constructed from such an FDT is consistent with the second law: this law is
inherent and the time arrow follows merely from the properties of the qm experiments.

1. Introduction

The glass transition belongs to the most important [1] group of physical problems for which
no solution has been obtained in spite of intensive and expensive research over the last forty
years—exploding since 1990 [2–4]. The problem is that of achieving an understanding of a
general dynamic picture of traces in the Arrhenius plot with a clear architecture (figure 1), for
a wide class of glass formers with multifarious molecular and liquid structures, not expected
to be accessible to general theoretical methods.

I think it should therefore be permissible to question whether the theoretical methods
available today are sufficient for clarifying this question or not. In particular, two observations
are striking:

(1) The compressibility paradox of the Fischer modes φ: for Q ≈ 2π/(100 nm), the
structure factor S(Q) is much larger than expected from the compressibility (κT ) equation,
S(Q) � n̄kBT κT [5].

(2) The size of the cooperativity for the α-process when calculated using the Gibbs distribution
[6–8] is much too large for glass transitions in confined geometries, or for the crossover
region [9] where the cooperativity is expected to become small [10].

In both cases the deviations are large, up to a factor of e.g. 50.
For the Fischer modes, thermodynamic explanations [5, 11] were announced. This

contradicts the general feeling that the glass transition should have a dynamic explanation.
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Figure 1. Traces of typical relaxation processes in an Arrhenius plot (log ω is the mobility, 1/T

the reciprocal temperature): a: the high-temperature Williams–Götze process; b: the boson peak;
c: cage rattling; α: the cooperative process; β: the local mode Johari–Goldstein process; φ: the
ultraslow-mode Fischer process.

A dynamic resolution of the compressibility paradox will be discussed elsewhere [12] that
rests on the representativeness of the smallest statistically independent subsystems for the α-
process: the cooperatively rearranging regions, CRRs [13]. A Levy-limit distribution with
preponderant components (Levy exponent α < 1) in an ensemble of many CRRs must be
confronted with phenomenological requirements that are decisive regarding the experimental
verification of Fischer modes [5].

For the confined geometries and the crossover region, an alternative evaluation with
fluctuating temperatures—excluded in this length scale by the Gibbs distribution—gives
consistent cooperativities [9]. This finding is also related to the definition and properties
of representative subsystems and to the question of what is measured for subsystems. The
existence of temperature fluctuation, however, leads [9] to the general problem of whether
statistical mechanics must be derived from a more general thermodynamics, or the reverse.

To call into question the ability of present methods encourages one to look for gaps in
present theoretical concepts. In the above series [1], understanding of quantum mechanical
(qm) experiments (the measurement process) was also listed. I think we should seriously ask
whether the ‘generation’ of thermodynamic variables, especially linear response correlations,
from molecular situations is relevant to such experiments [14].

The bald statement that the collapse of a macroscopic CRR wave function ψ(p, q) from
the phase space {p, q} onto thermodynamic variables in the Euclidean space R

3 is the same
as the mapping of the mechanical situation H(p, q) of the phase space onto those variables,
{p, q} �→ R

3, seems too simple. The problem of qm experiments is largely repressed by many
physicists for two reasons:

(i) The formerly mysterious quantum jumps with �Ef i = h̄ωf i could be built into quantum
dynamics, e.g. in Fermi’s golden rule and later developments up to Feynman’s path
integrals.

(ii) The construction of a highly accurate and consistent quantum mechanics for solid-
state physics, the verification of quantum electrodynamics up to ten decimals, and the
consistency of the standard model for elementary particles up to four decimals seem not
to leave gaps for unknown theoretical concepts.

Moreover, by way of compensation, the steadily repeated verification of qm by an enduring
series of more and more refined experiments prompted by Bell’s artificial inequality concerning
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there being no local hidden variables confirmed the assertion that a theory for qm experiments
is really a philosophical problem. The problem e.g. of the twenty adjustable parameters in the
standard model tends to be (perhaps unnecessarily) relegated as a problem for a new physics
beyond the standard model rather than for qm experiments.

In terms of Bohr’s first view on complementarity [15], we do not know which qm object
(the hidden non-local world) is mapped onto our physical reality by the qm experiment.
Here, we use only some commonly accepted aspects of the ‘how’, not the ‘what’, of the
mapping. (Schrödinger conjectured as regards the ‘what’ [16] that the hidden world is made
from eigensolutions of Maxwell’s equation on a ‘large’ four-dimensional S1 × S3 manifold.
The particles may be an experimental reduction (collapse) of such non-local eigensolutions
to points in the Minkowski space [17]. Lepton, baryon, and even quark [18] solutions can be
obtained in such a model [19].)

Many statistical physicists concerned with liquids do not discuss CRRs. They obviously
think that a good definition of CRRs and their size, if any, will be obtained en passant from
computer simulations of the {p, q} �−→ R

3 map mentioned above.

The discussion of qm experiments has extremely sharp limits. I think that qm experiments
have been from the beginning an inherent part of qm: any consequence for the predictability
of qm must be excluded, especially for all situations where the accuracy of the qm is as high as
mentioned above. This excludes all attempts to explain the qm experiments by qm (quantum
mechanics) itself. Defining a Hamiltonian or Lagrangian for the experiment seems to constitute
circular reasoning. Note the two variants—one beyond the fundamental scope and the other
beyond the practical scope—used to justify the lack of reporting of qm experiments [20].

On the one hand, a fundamental way out is indicated by Bohr’s complementarity [15]:
before the experiment we have only the qm object with no space R

3 and no time t ; after
the experiment we have the result in R

3 and t with no qm uncertainty. From this point of
view the phase space {p, q} with the Hamiltonian H(p, q) is in principle a back-construction
from the experimental results and not a priori a qm object. It is therefore, in principle, not a
necessary consequence of qm that the Gibbs distribution based on a {p, q} Hamiltonian and
the application of the phenomenological zeroth law reflects exactly what is measured in a
qm experiment as regards thermodynamic variables and linear response correlations. Details
about the relationship between the qm object, the results (reality), and the virtuality of qm as
obtained by the back-construction will be described elsewhere [19].

On the other hand, a practical and simpler way out is based merely on the assertion that
the qm experiment is an inherent part of qm. We are then interested in ‘phenomenological’
properties of qm experiments as providing a method for approaching specific situations,
especially thermodynamic situations. In other words, as mentioned above, we consider the qm
experiment as part of qm that can be phenomenologically described in terms commonly used
in this context [21].

I assume therefore that the statistical independence needed for the definition of CRRs is
a part of a thermodynamic situation that can be directly reflected and displayed by phenom-
enological properties of the qm experiment for the α-relaxation of the dynamic glass transition.
The experiment establishes the CRRs as representative subsystems for the α-relaxation. Both
striking observations (1) and (2) can be explained by the representativeness. The Fischer
modes will be investigated in [12]. The issue of fluctuating temperature will be discussed in
this paper.

The Gibbs distribution does not refer to any definite subsystem. It starts from energy
eigenvalues calculated using qm for a mechanically defined system with boundaries; e.g. for
a series of given volumes V : En(V ). Its temperature T in exp(−H(p, q)/kBT ) is
transferred from a large and given heat bath by means of the zeroth law and, being an
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equivalence class index, cannot fluctuate if the heat bath temperature does not depend on
V . The alternative von Laue approach to thermodynamics [22–24], however, refers to
freely fluctuating, independent subsystems (figure 2) in a large homogeneous sample. The
temperature can fluctuate. The sizes of fluctuations are determined by the sizes of these
subsystems. Divide, as a gedanken experiment for representativeness, the sample into parts
and look for changes in the linear response: obviously there exists a smallest one whose
equilibrium-fluctuation correlation functions and spectral densities are representative for linear
response of the whole sample. The representative subsystems are functional for the dispersion
zone of a given trace (α, φ, . . .) in figure 1. The smallest one for the α-relaxation is the CRR.

minimal work
for generating
a given
subsystem
fluctuation

environment
of the
subsystem with
relatively small
fluctuation
(E ; dΓ, dE, ...)

large total
system with
negligible
relative
fluctuation
(E , V , T ),
with boundary
conditions

0 0 0

freely fluctuating subsystem
with relatively large fluctuation
(E; ∆Γ, ∆E, ...), without
boundary conditions

∆Wmin

,

Figure 2. The freely fluctuating subsystem,
environment, total system, and minimal
work.

The gedanken experiment for representative subsystems only has meaning for liquids and
disordered aspects of solids. The discrete translation invariance of a lattice would not allow
the separation of a small subsystem from the large lattice. The unit cell of the lattice is not a
representative subsystem in the sense of our construction.

The freely fluctuating subsystems of the von Laue approach are suited well to the system
aspect of a qm experiment generating the observables of linear response. The aim of this paper
is to show that the fluctuation-dissipation theorem containing temperature fluctuations can be
interpreted as an equation describing qm experiments in thermodynamic situations.

The paper is organized as follows. Section 2 briefly describes the determination of co-
operativity for the α-relaxation and discusses the question of why just the glass transition may
be sensitive to the properties of qm experiments. Section 3 contains a short discussion of
differences and relations between the Gibbs and the von Laue approaches to thermodynamic
fluctuations. Section 4 provides the derivation of the FDT from the general properties of qm
experiments. Section 5 shows that the thermodynamics derived from such an FDT is consistent
with the second law. In the discussion (section 6) a further experimental test is suggested for
providing the basis for a decision between the alternatives for thermodynamic fluctuations, and
some developments in the literature are briefly commented on. Section 7 gives the conclusions;
briefly: thermodynamics with temperature fluctuation is the wider concept as compared with
the present statistical physics, and there is a theoretical foundation of such thermodynamics
provided by general properties of qm experiments.

2. Why is the dynamic glass transition sensitive to qm experiments?

In the earlier Letter to the Editor [9], the alternatives for determining the cooperativity Nα

(characteristic length ξα) were discussed. The result was that the formula [25] with temperature
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fluctuation of CRRs (δT ), stemming from the von Laue approach,

ξ 3
α = kBT 2�(1/cV )/ρ δT 2 (2.1)

was the favoured one. This corresponds to a cooperativity

Nα = RT 2�(1/cV )/M0 δT 2 (2.2)

which is the number of particles (molecular mass M0) in a CRR.
The cooperativity tends to Nα ≈ 1 (and ξα ≈ 0.5 nm) near the crossover region C of

figure 1. Since in dense liquids each given particle has strong energetic interaction with at
least the nearest neighbours, N ≈ 10 or more, and since Nα was determined from the spatial
statistical independence of temporal Fourier components in the α-process dispersion zone,
our problem is that of the statistical independence of small functional subsystems with strong
energetic interaction and correlation up to ranges with typical lengths larger than ξα . A similar
problem was discussed by Fuchs within mode-coupling theory [26].

Let us discuss this question within the Nyquist approach to the FDT [27]; see figure 3.
The transfer medium for measurements is a ‘cloud of quanta’ [28] in the adapted transmission
lines (TL) between emitter E (the qm object) and the absorber A (the apparatus). The
frequencies of these quanta reflect a fluctuating mobility field, log ω(r, t), introduced
[29, 30] for the description of the dynamic heterogeneity of the α-process. The problem
of statistical independence is thus relegated to that of the events of this field, called ‘attempts’.
This ‘mesoscopic’ log ω(r, t) field seems very suitable for explanation of the generality-
multifariousness problem mentioned in the first paragraph of section 1.

TLTL

R(ω)V(t)

V (t) Z

A

E

Figure 3. Nyquist’s scheme for his derivation of the FDT. E: the emitter; A: the absorber; TL: the
transmission lines.

The first question is then that of whether the density of attempts in each representative
functional subsystem (cage c, Johari–Goldstein β, α-process, Fischer modes φ) is large enough
to define the smallest statistically independent subsystems. To decide on this we use the
diffusivities of a typical isothermal section of the Arrhenius plot in figure 1 (table 1). Both the
‘velocities’ and the ‘diffusivities’ are well ordered over many orders of magnitude, so a large
temporal and spatial density of attempts is always guaranteed to provide a probability theory
of events in the spectral density for every subsequent process (e.g. c for β, c and β for α,
α for φ).

Mechanics has to do with particles and fields, whereas thermodynamics has to do with
subsystems and environments. It seems that conventional qm is not well suited to finding small
functional subsystems (related to β- or α- or φ-processes) that are statistically independent
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Table 1. Typical molecular ‘velocities’ and ‘diffusivities’ as estimated from length scales and
timescales for the different relaxation processes.

Time Length Velocity Diffusivity
Process (s) (nm) (m s−1) (m2 s−1)

Cage c 1 × 10−12 0.1 1 × 102 1 × 10−8

Johari–Goldstein β 1 × 10−6 0.5 5 × 10−4 2.5 × 10−13

α-process 1 × 10−1 3 3 × 10−8 9 × 10−17

Fischer mode φ 1 × 106 100 1 × 10−13 1 × 10−20

and representative for these processes in the mobility field log ω(r, t). The qm experiments,
however, seem well suited for this task because the concepts, the qm object and apparatus,
can be adapted to our abstractly formulated mobility field for the dynamic glass transition of
figure 1: its representative functional subsystems can be identified with both the qm object
(with a ‘macroscopic’ wave function ψ) and the apparatus. This defines a succession of ‘self-
experiments’ and I will show in section 4 that we actually get the phenomenological FDT as
the equation describing this succession. Note that the representativeness gedanken experiment
for the subsystem fluctuation indirectly induces a length scale, the characteristic length (e.g. ξα

of equation (2.1) or ξφ [12]) in the linear response, depending otherwise only on the frequency
ω. Note further that the term ‘phenomenological’ takes on a real meaning: measured by a
succession of qm self-experiments.

First, in the next section (section 3), we shall compare the Gibbs and the von Laue approach
to statistical physics as regards two questions: what about temperature fluctuation and what
about subsystems suited for self-experiments?

3. Comparison of statistical mechanics without temperature fluctuation and
thermodynamics with temperature fluctuation

All approaches to thermodynamics rest on the fundamental role of energy = heat + work.
Defining the thermodynamic equilibrium as the same stationary state before and after isolation,
i.e. undergoing no change over time, the role of energy results from the fundamental conjugation
between conservation of energy and homogeneity of time (the Noether theorem). The
conventional statistical mechanics starts from particles and fields and is, therefore, based on
equations similar to

ẇ = (i/h̄)(wH − Hw) (3.1)

with w the statistical matrix and H the Hamiltonian (the Liouville equation).
The two variants under consideration are primarily distinct in the ways in which the energy

is introduced.

3.1. The Gibbs treatment of statistical mechanics

Energy E comes here from mechanics. The actual degeneracy of eigenvalues in sets of many
particles is counted by statistical weights d) = �) d)′ in the probability distribution of the
microcanonical ensemble:

dw = constant × δ(E + E′ − E0) �) d)′ (3.2)

where E0 is for the total system, (E′, d)′) for the environment, and (E, �)) for the subsystem
(figure 2). We use �) for the subsystem to indicate that �), or better � ln �), does not
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need to be infinitesimally small in relation to the properties of the subsystem if the latter is
small. Consider several statistically independent subsystems w(1), w(2), w(3), . . .. Then, from
statistical independence, w = w(1)w(2) · · ·, from the presumed additivity of their energies,
E = E(1) + E(2) + · · ·, and from the energy property of being a mechanical integral [23], we
obtain

log wn = α + βEn (3.3)

for the probability wn of the nth state of any subsystem. Thermodynamics is introduced by the
integral over the environment. The S ′(E′) function for the environment entropy is a ‘sharp’
function of energy because of the infinitesimality of d)′ and of corresponding dE′. Forget
temporarily the small subsystem and put for the system temperature T 0 = T ′ = dE′/dS ′. The
question is: what is the temperature of the subsystem?

Strictly speaking, the temperature of the subsystem is determined in the Gibbs approach
by the zeroth law. The mutual equilibrium of any pair of systems (here the subsystem and
environment) is an equivalence relation. This implies that any set of systems is partitioned
into equivalence classes with the equivalence index T for equilibrating by heat exchange.
Equilibrium means then T = T ′ (sharp). Such a subsystem temperature cannot fluctuate:

�T 2 = 0 (3.4)

and the Gibbs distribution

wn = A exp(−En/kBT ) (3.5)

is obtained from equation (3.3).
This procedure for finding T as described in [23] is based on the questionable assumption

that there should exist, ‘by definition’, a sharp function �)(Ē), and therefore a sharp function
S ≡ kB ln �) = S(Ē) for the subsystem, with Ē the mean value of the subsystem energy.
This assumption does not correspond to the ability to fluctuate of small subsystems far from
the boundaries of the large total system: the freely fluctuating subsystems (figures 2 and 4).
Formally, the ability to fluctuate is still expressed in the Dirac delta of the microcanonical
distribution by E = E0 − E′ being a small difference between huge numbers. The possibility
of different paths across subsystem fluctuation regions (figure 4(a)) corresponds to different
subsystem temperatures, i.e. to individual temperature fluctuations, δT �= 0.

Let us restate this important issue in other words. The statistical weight �) is defined
in [23] as ‘the number of quantum states corresponding to the interval �E’, of the order of
the mean energy fluctuation. The use of �) for the entropy S = kB ln �), however, is factual
as always in science: �) is based on actual occupation numbers that do not define, as pure
numbers from a distribution, any exact E-value inside the �E interval. Different E-values
can be realized for given �) by different occupation distributions. As both �) and �E are
stochastic functions of time, �)(t) and �E(t), the quotient �)(t)/�E(t) is again a stochastic
function, not a sharp value. (Mathematical example from p 133 of [31]: if A(t) and B(t) are
symmetrically Gauss distributed, then the quotient A(t)/B(t) is Cauchy distributed.) Thus
both �) and �E are real fluctuations with no one-to-one dependence �)(�E) inside the
small system. Equation (7.4) from the textbook [23], �) = (d)(E)/dE) �E, is therefore not
suitable for application to the fluctuation of subsystems if �) and �E are actual fluctuations. It
was this equation that finally eliminated the temperature fluctuation from the Gibbs distribution.

Since pressure p and chemical potential µ are also equivalence class indices (for
equilibration by work and by particle exchange, respectively), one could ask why the pressure
fluctuation �p2, e.g., can be calculated from the Gibbs distribution. This is possible because
work can be externally parametrized, e.g. by the series of volumes for En(V ) as mentioned



10378 E Donth

≈ ≈

≈ ≈

(log) Γ

{

{

∆Γ

∆E
E

2
1

subsystem

environment

a

b

log Γ

dlog Γ

E

dE

fluctuation zone

1/
T

=
dS

/d
E

Figure 4. The handling of state and energy fluctuations (�), �E) in the derivation of the Gibbs
distribution. (a) Different ‘paths’ (e.g. 1 or 2) are possible across the fluctuation region for a
small subsystem. (b) A relatively sharp fluctuation zone is formed for large systems, as for the
environment. The path possibilities defining the temperature are then restricted to the derivatives
along the zone.

above, and heat cannot. Heat can only be reduced to an equilibrium energy change by the
entropy, δQ = T dS, finally giving the heat (kBT ) numerator in the Gibbs distribution. There
is no corresponding work (k′

Bp) numerator. Thus, a pressure fluctuation can be calculated from
the canonical ensemble (see e.g. equation (19.9) in Hill’s book [32]), but it depends on boundary
conditions needed for the application of any ensemble calculation of fluctuation. Application
of boundary conditions does not correspond e.g. to a small representative scattering volume
inside a large sample cell (figure 2). It also does not correspond to calorimetry of samples with
small CRRs, because any CRR is representative for linear response of the total sample, and
the overwhelming number of CRRs correspond to the freely fluctuating situation of figure 2.
The few CRRs that are affected by the boundary of the total sample can be neglected [22].

In the Gibbs approach, the only way to define statistically independent subsystems seems
to be by means of energetical decoupling: equation (3.3) implies that E = E1 + E2 ⇐⇒
w = w1w2. Energetical decoupling is, as mentioned above, useless for explaining small
cooperativities Nα ≈ 1 for statistically independent CRRs near the crossover.

Starting from the Gibbs distribution, thermodynamics is a relatively simple construction
from the mechanics of particles and fields.

3.2. The von Laue treatment of thermodynamics

Energy is from the beginning introduced from thermodynamics as the internal energy U for
subsystems:

dU = T dS − p dV. (3.6)



Does temperature fluctuate? 10379

The environment (as a necessary complement to any system) is introduced by the concept of
minimal work �Wmin (the Stradola formula; figure 4(b); see also sections 19, 20 of [23]):

�Stotal = �Wmin/T 0 (3.7)

with Stotal = S + S ′, subsystem plus environment. For fluctuations (figure 2) we consider
the minimal work necessary for generating a subsystem fluctuation away from the average.
The heart of the von Laue approach is the application of Boltzmann probability directly to the
figure 2 situation:

wfluctuation = constant × exp(�Stotal/kB). (3.8)

Let the total system be defined by V 0 = constant. Otherwise a second term in �Wmin

(∝�V 0) is necessary. We thus have �V = −�V ′. Beyond this calculation procedure,
the V 0 = constant condition is not important for fluctuations of a small freely fluctuating
subsystem inside and practically [22] does not affect their statistical independence. Minimal
work is for reversible processes: �S = −�S ′. Then, from equation (3.6),

�Wmin = �U − T �S + p �V (3.9)

where again the � for the subsystem need not be infinitesimally small. This opens the way to
calculating subsystem fluctuations. The formal treatments of T �S and p �V are the same,
so temperature fluctuations are not excluded. From a second-order series expansion in � we
obtain

wfluctuation = constant × exp[(�p �V − �T �S)/2kBT ]. (3.10)

We put now T 0 = T since the treatment of fluctuations is separated from the average
temperature of equilibrium. Equation (3.10) implies [22, 23], in contrast to equation (3.4),
a non-zero temperature fluctuation:

�T 2 = kBT 2/CV . (3.11)

Starting from representative, freely fluctuating, and statistically independent subsystems,
the insertion of mechanics of particles and fields seems to be non-trivial.

3.3. Differences and relations between the two treatments

First, the differences. The Gibbs treatment starts from mechanics, the subsystem fluctuations
are restricted by the zeroth law that excludes temperature fluctuations, and the other fluctuations
are governed by boundary conditions. On the other hand, the von Laue treatment starts from
thermodynamics (i.e. the mechanics must afterwards be introduced by means of minimal work;
see below), the subsystem fluctuations are not restricted (temperature can fluctuate) because the
zeroth law is only applied to the large total system (T 0 in equation (3.7)), and the fluctuations
are not governed by boundary conditions.

The possibility of defining statistically independent subsystems in the Gibbs approach
is restricted to energetic decoupling. There is no such restriction in the von Laue approach,
except that they must be large (or dense; cf. table 1) enough to support thermodynamics.

Second, the relations. The von Laue treatment implies the Gibbs treatment:

von Laue �⇒ Gibbs (3.12)

but the inverse, of course (equation (3.4) and equation (3.11)), is not true.
A starting point for understanding the implication of equation (3.12) may be Fermi’s golden

rule of quantum mechanics (qm). The heat exchange between the subsystem and environment
is mediated by Planck quanta:

h̄ωf i = Ef − Ei. (3.13)
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Absorption and emission are microscopically equivalent. This implies that the (reversible by
definition) minimal work is equivalent to a change of mechanical subsystem energy E in the
microcanonical qm ensemble (equation (3.2)):

�Wmin = �Eqm. (3.14)

In the Gibbs treatment, figure 4, the equation (3.14) equivalence is reduced to an
implication by the restriction originating from the application of the zeroth law to the subsystem
before the fluctuations are separated.

The difference between the alternatives is important when representative subsystems in
the nanometre range must be considered, e.g. for linear response or scattering in liquids,
especially below the crossover region. The difference is not important if the consideration
of large phases is sufficient, as for many properties of gases or crystalline solids, because
(�T 2)1/2/T ∼ 1/N1/2 is small there, e.g. 1/N1/2 ≈ 10−5 for a subsystem of µm size.

A ‘microscopic von Laue distribution’ with δT �= 0 that could be substituted for the Gibbs
distribution with �T 2 = 0 has yet to be invented. Only preliminary attempts to enlarge the
Gibbs distribution correspondingly have been described [33].

Let us list some problems encountered in trying to find a microscopic von Laue distribution:

(i) The calculation of fluctuation formulae for three thermodynamic dimensions, e.g. with an
additional shear term −σV dγ in equation (3.7), needs additional assumptions.

(ii) The formulation of statistical independence in a mechanical system seems delicate.
(iii) The classical (non-qm) Maxwell–Gibbs separableness, E(p, q) = T (p)+V (q) �⇒ ρ =

ρpρq , may be lost.
(iv) The non-infinitesimal changes (�T , �S, . . . ) in small subsystems open the way for

insertions beyond the Gaussian character of the Gibbs distribution, e.g. for Levy statistics
with preponderant partial systems or subsystems [12].

3.4. Frequency partition

Application of the fluctuation formulae to the glass transition needs a partition of time or
frequency domains, because only Fourier components in a frequency region around a slow
‘glass frequency’ are relevant. This region is called the ‘dispersion zone of the dynamic
glass transition’ (figure 5). The partition of an entropy fluctuation, �S2 = kBCp, leads to
a compliance with a relevant step ∝�c at the glass transition, whereas the partition of the
temperature fluctuation equation (3.11) leads to a modulus with a step ∝�(1/c) (c = heat
capacity). This reciprocity is an implication of the linear response equation J ∗G∗ = 1. In
general, compliances J ∗ correspond to thermodynamically extensive (additive) variables, and
moduli G∗ to intensive ones. The partition of thermodynamic fluctuation formulae such as
�S2 = kBCp is called the fluctuation-dissipation theorem, FDT; its forms are nearly identical
for intensive and extensive variables. For h̄ω � kBT we obtain for extensive variables

x2(τ ) = −kBT (J (τ) − Jequil) x2(ω) = kBT J ′′(ω)/πω (3.15)

and for intensive variables

f 2(τ ) = kBT (G(τ) − Gequil) f 2(ω) = kBT G′′(ω)/πω (3.16)

where the spectral densities {x2(ω), f 2(ω)} in the frequency domain are connected to the
correlation functions {x2(τ ), f 2(τ )} in the time domain by a Fourier transformation:

x2(ω) = (1/π)

∫ ∞

0
dτ x2(τ ) cos(ωτ) f 2(ω) = (1/π)

∫ ∞

0
dτ f 2(τ ) cos(ωτ). (3.17)
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Figure 5. The dynamic entropy compliance J ∗
S = J ′

S − iJ ′′
S (a) and temperature modulus

G∗
T = G′

T + iG′′
T (b) as functions of (the log of ) frequency ω in the dispersion zone of the dynamic

glass transition. Part (c) shows the (log of the) frequency–temperature equivalence, equation (3.18),
mediated by the ω-identity of the FDT. Different experimental scans across the dispersion zone are
now determinable by the external parameters T and ω. Note the difference from the subsystem
fluctuation region of figure 4(a) for the Gibbs approach.

The α-process dispersion zone in the log ω–T plot (figure 5(c)) reflects the fluctuation
properties of the smallest representative subsystems for the α-process (CRR). The dispersion
zone is not sharpened by system enlargement. Note the difference from the fluctuation region
of figure 4(a) for the Gibbs approach. In the �)–�E region, no determination of a definite
physical path is possible apart from the zeroth-law artifact. In the � log ω–T zone, however,
paths can be defined also for one single CRR by linear response experiments, since T = T 0 can
now be used without affecting the fluctuations, and the fluctuation frequency ω (in the l.h.s. of
the second of equations (3.15) and the second of equations (3.16)) is exactly the same as the
susceptibility frequency ω applied in the measurement (in the r.h.s.). This important property is
called the ω-identity [28] of the FDT. It is in the final analysis based on the indistinguishability
of quanta in Nyquist’s transmission lines (figure 3). This property can be used [25] to determine
the temperature fluctuation δT of CRRs from the dispersion of the log of the frequency, δ log ω,
for the glass transition:

(d log ω/dT )along = δ log ω/δT (3.18)

where ‘along’ means along the dispersion zone. A more direct proof will be published
elsewhere.
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Equations (3.15)–(3.18) show that the linear response informs us exclusively about micro-
scopic fluctuations. Suppressing temperature fluctuations by using the Gibbs distribution could
mean that important information about the glass transition remains hidden.

4. The FDT considered as an equation describing qm self-experiments on
thermodynamic subsystems

The FDT including temperature fluctuation can be considered as an equation describing
quantum mechanical (qm) experiments that identify the subsystem with both the qm object
and the measuring apparatus. In a way, our analysis is a synthesis of Nyquist’s derivation of
the FDT [27] and Szilard’s discussion of thermodynamic experiments [21] in the context of
von Laue’s approach to the fluctuation [22]. The new element here is the identification of the
object and the apparatus with the subsystem.

Szilard described the experiment as ‘made by demons’ in simple thermodynamic systems,
and this could reflect many aspects of the direction in which we intend to go. Our qm experiment
is based on Bohr’s wholeness [15]: we must consider two things—the object and the apparatus.
We identify a somewhat large qm object and a somewhat miniaturized apparatus with the
same subsystem (figure 6). A qm experiment with this identification will be called a self-
experiment. It seems interesting that the original derivation of the FDT by Nyquist [27] can
easily be discussed in such terms (figure 2). The identification is there realized by the adjusted
transmission lines between the emitter and absorber resistors.

sub-
system

apparatus

q.m. object

Figure 6. Identification of the apparatus and the object of a quantum mechanical experiment
with the same representative thermodynamic subsystem. The collapses of a succession of such
‘self-experiments’ in freely fluctuating subsystems yield the fluctuation-dissipation theorem that
includes temperature fluctuation.

As mentioned in section 3, the stationarity of thermal fluctuations corresponds to the time
homogeneity of quantum mechanics. The central role of the Hamiltonian for qm systems is to
be transferred to the energy form of thermodynamics for subsystems. This is, for subsystems
that are not too small, the fundamental form of the first law and the first part of the second law:

dU = T dS − p dV ± · · · =
∑

i

fi dxi. (4.1)

This form includes heat and work, and there is no reason for a different treatment of their
fluctuations. Both stem from qm fluctuations of the underlying mechanical system. Starting
from equation (4.1) means that fluctuations of temperature and pressure can be treated in the
same way for the measurement.

The main requirement for a subsystem to be an apparatus is representativeness: this allows
homogeneity in space and time and functionality, i.e. specific application to a given dispersion
zone. All representative apparatus subsystems measure the same susceptibilities as the smallest
ones, e.g. the CRRs for the α-process.

The FDT is derived from a stationary stochastic succession of qm self-experiments. A
virtual thermodynamic step corresponds to one collapse of the wave function ψ for a CRR.
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According to equation (4.1), the only variables which are important for thermodynamics and
the linear response of our subsystems are the energy-conjugate variables f and x. It follows
that the ψ-collapse corresponds to a certain jump in the {f, x} variables.

Consider the product x(t ′)fB(s) [14] with x(t ′) characterizing the extensive aspect of the
state (e.g. entropy, x = S) and f the intensive aspect (e.g. f = temperature T ); t ′ and s are
two times. The index B indicates that fB is the quantity after measurement; the stochastic
integral

fB(t) =
∫ t

−∞
G(t − t ′)ẋ(t ′) dt ′ (4.2)

means linear and causal determination from stochastic entropy fluctuations x(t ′) before the
measurement: x(t ′) without the index B is not yet measured; x and fB are complementary
in Bohr’s sense. In terms of the fundamental way out described in section 1, nothing is
known about the behaviour of the variables x or f of the qm objects, without the index B,
i.e. before they are measured. In our treatment we do not need detailed information about their
stochastics. The stochastic succession of collapses may be described by associated processes
with uncorrelated increments [34].

Confined to x- and f -variables, there is no other way for stationary reflection of an arbitrary
mechanical response in the macroscopically linear region other than by means of a G(t − t ′)
memory of the subsystem. To derive the FDT for f we need the expectation value (denoted
by script E in this paper) of the product xfB . I will show that

Ex(t ′)fB(s) ∝ ε(s − t ′) ε(τ ) =
{

1 for τ > 0

0 for τ < 0
(4.3)

with ε(τ ) the Heaviside step function.
Without experiment, we would have zero correlation between the observable fB and a

non-measured stochastics of x. Let t ′ be the time of the experiment considered and take s

different times. Before the experiment, s < t ′, the state x(t ′) is ‘not measured’ and the state
x(t ′) has no influence on fB(s); Ex(t ′)fB(s) ≡ 0 for s < t ′. At the experiment, s = t ′, the
state x(t ′) realizes its part on the ‘apparatus pointer’ for fB(s). After the experiment, s > t ′,
the pointer is fixed at fB(s) [21]. We have a fixed relation between fB(s) for all s > t ′ and
the realized state x(t ′) at t ′: Ex(t ′)fB(s) = constant for s > t ′. The ε-step in equation (4.3)
describes the quantum jump of the experiment at t ′ as being one event in a {t ′}-succession of
such self-experiments of the subsystem. Stationarity of this succession and of the equilibrium
fluctuations implies the reduction {t ′, s} → {(s−t ′)}. These time differences generate the two-
time correlation functions of the FDT, irrespective of the dimension of mechanical correlations,
e.g. three- or four-time correlations.

It is easy to derive the FDT from EfB(t)fB(s) using equation (4.3) in the stochastic
integral. After Fourier transformation, we obtain

�T 2(ω) = Ē(ω, T )G′′
B(ω, T )/πω (4.4)

for the spectral density of the temperature fluctuation, �T 2(ω), including the Bose factor
Ē(ω, T ) = (1/2)h̄ω cotanh(h̄ω/2kBT ). This factor follows from exchange of quanta; this
factor must have the dimension of an energy. The measuring process must be mediated by
quanta from oscillators with corresponding energies, on average Ē(ω0, T ), where ω0 is the
frequency of the relevant oscillator. From the ω-identity of the FDT (section 3.4) we get
ω0 = ω. For h̄ω/kBT � 1 the ω-identity implies that the FDT in the ω-domain is the basic
one; the correlation function in the time domain must be calculated afterwards.

The subsystem memory G(t − t ′) in equation (4.2) advances to an observable dynamic
temperature modulus, G → GB , with the imaginary part G′′

B(ω, T ) and the glass transition
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step �GB ∼ �(1/CV ). Starting from the product f (t ′)xB(s) we would get the compliance
step �JSB ∼ �Cp. Comparing with section 3 we see that the Gibbs distribution can reflect
the FDT for extensive fluctuation, �S2 = kB �Cp, but not for the intensive fluctuation,
�T 2 = kBT 2�(1/CV ).

In the classical derivation of the FDT [23, 35], the measurement is simulated by
equation (3.13) for exchange quanta in the qm perturbation theory. Using the Gibbs
distribution, however, excludes temperature fluctuation from the FDT in this derivation.

5. Discussion of thermodynamics from the point of view of the FDT

In this section, thermodynamics is defined as the relation between those variables whose
changes are measured by the FDT.

(i) The second law. The increase of internal entropy is a purely mathematical implication of
our stochastic derivation of the FDT. Since we get a stationary correlation function for any
linear response variable {xB, fB}, we obtain inevitably a non-negative spectral density for
all observable fluctuation. This follows from the mathematical Khintchine theorem (p 307
of [31]): a function R(t) is a correlation function of a continuous stationary stochastic
process if it can be represented as R(t) = ∫

cos(tω) dF (ω) with a certain distribution
function F (ω). In our case, F (ω) ∝ ρ(ω) dω with ρ(ω) = spectral density, ρ(ω) � 0 as
for all probability densities; the continuity of our stochastic process fB(t) follows from the
stochastic integral in equation (4.2). Since also Ē(ω, T ) > 0, non-negativity of spectral
densities implies non-negativity of loss susceptibilities. This is sufficient for ensuring that
there is always non-negative entropy production in the linear stage around any equilibrium
situation, i.e. the second law.

Let us reformulate [14] the most important aspects. The time order of each quantum
mechanical self-experiment is sufficient to explain the increase of internal entropy during
and after an external (index B) disturbance. Although any self-experiment has a time order,
the succession of self-experiments is thermodynamically reversible [21] for spontaneous
equilibrium fluctuations without external disturbance [14]. Although internal (x) and
external (xB)—the same holds for f and fB—quantities are of the same physical nature in
the linear region, it is their complementarity (only one B-index in the product xBf or xfB

considered above) that is responsible for irreversibility. Although the qm Hamiltonian of an
independent subsystem is symmetric with respect to time reversal, for real thermodynamic
subsystems with a succession of self-experiments the spontaneous recurrence of a state
with smaller internal entropy is not possible.

For cross-fluctuations we must consider xiBfj or xifjB with i �= j . Example: one
gets a dynamic thermal expansivity α∗(ω) from the ω-domain partition of �S �V =
kBT (∂V /∂T )p [36]. For glass transition Fourier components, it also seems interesting to
consider the products ffB and xxB .

(ii) The character of the qm experiment. Define the term ‘virtual’ in the sense of section 1:
the phase space {p, q} with the Hamiltonian H(p, q) is considered as a back-construction
from the results, from reality, not as a qm object to be measured. We may then ask
which virtual mechanical property is ‘demolished’ by the self-experiments. Since the
virtual mechanical system without self-experiments has time-reversal symmetry, Poincaré
recurrence is inevitable for it. Since negative internal entropy production is implied by this
recurrence, the mechanical system contradicts the second law. Since our qm experiment
excludes negative entropy production, we conclude that at least the Poincaré recurrence
is demolished by the experiment. I suggest calling the time concept that is connected
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with the stationary succession of self-experiments, i.e. with this demolition, the vital time.
No justification from gravitation, cosmology, or violation of T -invariance in elementary
particle physics is necessary for the time arrow of vital time. Its arrow can be generated
by the FDT self-experiments alone.

Incidentally, three time concepts are thus used in thermodynamics: the real time t ′

measured by a clock near to the apparatus; a large set of time differences {t ′ − s} needed
for the definition of time in correlation functions and frequency in spectral densities; and
the vital time for the stochastic succession of self-experiments. Referring to the more
fundamental form of equation (4.4) in the frequency domain, we have the apparatus time,
the quantum frequencies, and the vital time.

(iii) The zeroth law. This law failed in application to mechanical fluctuation in the fluctuation
region of small subsystems (figure 4(a)). Insisting on the zeroth law, a new thermodynamic
principle must be introduced to gauge virtual fluctuations that are forbidden by the zeroth
law (the principle of local equilibrium, PLE [28, 37]). Gauging is not necessary for the
von Laue fluctuation approach to thermodynamics, since both the equation of state and
the fluctuations are directly generated by the same fundamental form, equation (3.6) or
equation (4.1).

The temperature–frequency equivalence (the Boltzmann superposition principle for
linear response), being a special kind of PLE with inclusion of ln ω or ln τ , can be applied
to small subsystems such as to CRRs, since the ω-identity ensures the existence of paths
in the dispersion zone of the dynamic glass transition for small systems also (section 3.4).

6. Discussion

6.1. A further test for the von Laue approach

The behaviours of the characteristic length or of the cooperativity near the crossover region of
figure 1 are different when calculated by the von Laue and by the Gibbs treatment (figure 4 for
a poly(n-alkyl methacrylate) series (PnAMA) in reference [9]). In the former case, the square
root of the cooperativity, equation (2.2), tends linearly to 1: N

1/2
α (T ) → 1 [38], whereas in

the latter case, the cooperativity near the crossover remains large, N
1/2
α ≈ 8.5, i.e. Nα ≈ 70,

corresponding to a ξα(Gibbs) four times larger than ξα(von Laue) ≈ 0.5 nm. The alternatives
can be distinguished when dynamic neutron or x-ray scattering embraces the range of time
and wave-vector (Q) of the crossover region (figure 7). According to a suggestion by Stefan
Kahle [39], the dielectric traces of the a-, α-, and β-processes in the Arrhenius plot should
be directly compared to the iso-Q lines from dynamic scattering. If the increase of Q for the
α-process starts with Q ≈ 2π/0.5 nm ≈ 12 nm −1, then the von Laue approach is indicated;
if the Q-increase starts with Q ≈ 2π/2 nm ≈ 3 nm−1, then the Gibbs approach is indicated.

Several details must be discussed as regards application of the test:

(i) Transferability of the calorimetric results from the homologous PnAMA series to other
substances where the crossover frequency is high and at present not accessible to precise
heat capacity spectroscopy.

(ii) Distinction between two crossover scenarios [40].
(iii) Evaluation of dielectric data suitable for a comparison with dynamic scattering and for

the application of the FDT [41–44].
(iv) Separation of an additional length scale in the crossover region as indicated by computer

simulations [45].
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Figure 7. The Arrhenius plot expected for comparison of dielectric traces log ωmax (wavy lines) for
the high-temperature process a, the cooperative process α, and the local mode β in the crossover
region for splitting scenario I [40] with iso-Q lines (− log τ(Q)) from dynamic neutron scattering
(schematically, as suggested by Stefan Kahle [39]).

6.2. Three comments on some recent activities described in the literature

(1) Molecular dynamics computer simulation can today determine a pattern of kinematic
dynamical heterogeneity above and near the crossover region, e.g. the spatial shift of
any particle during a typical a-process time [46]. The length scale of this pattern
(the ‘kinematic length’) is much larger than the ‘characteristic length’ determined
from stationary periodic calorimetry using equation (2.2). This characteristic length
is different from the mechanical length because of representativeness, thermodynamic
definition, and functionality: the corresponding dynamic heterogeneity is e.g. determined
by representative stationary entropy fluctuations relevant for the a- or α-process. Since the
mechanical heterogeneity may also involve dynamic regions with no entropy fluctuation,
the characteristic length is expected to be smaller than the mechanical length.

(2) A violation of the FDT for partly frozen glasses was observed by molecular dynamics
computer simulation [47–49] and by dielectric-noise experiments on glycerol [50]. The
result is that the response after a quench into the glass state is smaller than expected from
the fluctuation remaining in a non-equilibrium state. From the standpoint of FDT viewed
as an equation describing the qm experiment, this result would mean that a fraction of the
fluctuation quanta (in the transmission lines of figure 3) are used to stimulate the structural
relaxation and are therefore missing for the linear response measured.

(3) To give the glass transition a thermodynamic basis, Mézard and Parisi used a replica-
coupling method to find a certain crossover temperature [51] which corresponds to the
edge of a metastability region. The authors tried to show how the glass transition
can be described in the framework of coupled replicas as an ordinary phase transition.
Enlarging the space of parameters to include the hidden coupling of replicas, they
find a first-order transition line terminating at a critical point. There seems also to
be a problem with dynamic heterogeneity. As long as the dynamic glass transition is
described using the Gibbs-distribution thermodynamics as a ‘static’ boundary condition,
then dynamic heterogeneity when accompanied by free-volume heterogeneity must be
reflected by the equilibrium Gibbs distribution, and a thermodynamic approach to the
glass transition seems inevitable. If, however, the von Laue approach is taken as the
basis, and if thermodynamics is the consequence of a FDT with genuine temperature
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fluctuation, then the dynamic heterogeneity need not inevitably be reflected by Gibbs
equilibrium thermodynamics: if the thermodynamics contains temperature fluctuation,
then dynamical elements of the momentum {p}-space—additionally to the Maxwell
factor—seem inevitable in the classical microscopic von Laue distribution. Computer
physicists interested in temperature fluctuation for molecular dynamics (MD) might try
to simulate the equations (3.7), (3.8), and (3.10) of the von Laue approach for freely
fluctuating subsystems.

7. Conclusions

Phenomenological thermodynamics can be deduced from the fluctuation-dissipation theorem
considered as an equation describing a stationary succession of quantum mechanical
experiments on and with representative subsystems. This thermodynamics has a fluctuating
temperature. The basic concept of representative subsystems has consequences for the
dynamics and thermodynamics of liquids and other disordered materials. The distribution
function derived from this thermodynamics is called the microscopic von Laue distribution.
Although not yet invented, it must be different from the Gibbs distribution. The time arrow
of the second law is an inherent property of such a thermodynamics. The behaviour of the
characteristic length of the dynamic glass transition, especially near the crossover or in confined
geometries, seems to give strong support to such a view of thermodynamics.
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